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Abstract

Implementing numerical algorithms typically demands
a trade-off between readability and performance of the
code. However the way we write programs affects our un-
derstanding of the problems we are trying to solve. Stati-
cally typed languages represent numbers and arrays with
primitive types. This means that the most relevant data
types for signal processing have only very limited capabil-
ities in those languages. The dynamically typed program-
ming language Ruby is pure object-oriented and makes it
easy to implement algorithms which will work on arrays
with elements of any numerical type. However current
Ruby interpreter is lacking in terms of processing speed.
This paper presents a Ruby extension which makes use of
the 1ibJIT just-in-time compiler. Dynamical typing is used
to analyze closures and translate corresponding element-
wise operations for arrays to machine code. The same ap-
proach is used to compile tensor operations thus allowing
the use of Einstein notation in Ruby.

1 Introduction

Developers of real-time computer vision systems need
to address multiple challenges and constraints. The de-
mand of achieving general applicability conflicts with the
requirement to achieve real-time performance. In prac-
tise numerical algorithms are often developed and tested
using a computer algebra system and later on manually
ported and optimized. In general terms the problem is
that of a widening semantic gap between the abstract exe-
cution model and the actual hardware architecture. There
is a need for virtual machines which provide an abstract
execution model without impacting on performance too
much.

Recently there has been a renewed interest in dynam-
ically typed programming languages[6]. While they are
often rejected due to performance concerns, the potential
savings in developer-time should be a compelling reason
to invest effort to overcome these issues. A publication
by Roman er al.[4] demonstrates that robotic projects can
greatly benefit from the dynamic properties of the Ruby
programming language.

In this paper we show that it only requires a moderate
effort to combine Ruby and the just-in-time compiler li-



brary 1ibJIT' to bring together high performance and the
agility of a dynamically typed language in a single sys-
tem.

In the next section we show present approaches and the
motivation of our work. In Section 3 we use dynamic
typing for just-in-time compilation of array- and tensor-
operations. In Section 4 we compare the resulting perfor-
mance to that of a traditional ahead-of-time compilation.
Section 5 shows extraction of features and descriptors as
an example of a concise implementation created with this
approach. In Section 6 we conclude and suggest future
work.

2 State of the art

2.1 Static library for static language

Most object oriented, statically typed languages have a
split type system. There are primitive types which di-
rectly correspond to registers of the hardware and there
are object types which support inheritance and dynamic
dispatch.

In C++ not only integers and floating point numbers but
also arrays are primitive types. Unfortunately these are
the relevant data types for representing images. To imple-
ment a basic operation such as adding two values so that it
will work on different types, one needs to make extensive
use of template meta-programming. Another problem is
that when a developer wants to modify one aspect of the
system, the static typing can force numerous rewrites in
unrelated parts of the source code[6].

To avoid this problem the OpenCYV library does not use
the type system of the programming language to handle
different pixel types of images. The information about
the pixel type is stored in member variables of the image
type instead. However this means that it is not possible
to use dynamic dispatch to implement algorithms which
have to work on different types of images. The required
mechanisms have to be implemented explicitly.

Ihttp://www.gnu.org/software/dotgnu/libjit-doc/
libjit.html

Listing 1: Numerical types in Ruby

require ’'mathn’

require ’complex’

x=-8/6

# —4/3

y = x * Complex( 1, 2 )

# Complex(—4/3, —8/3)

z =2 *xx 80

# 1208925819614629174706176

y+z

# Complex(3626777458843887524118524/3, —8/3)

Listing 2: Higher-order functions in Ruby

arr = [ 2, 3,5, 7]
arr.collect { |x|] x * X }

#[4, 9, 25, 49]
arr.inject( 0 ) { |a,b|] a+ Db }
# 17

2.2 Ruby programming language

There are several computer vision libraries which provide
extensions to a dynamically typed language. For exam-
ple EasyVision, Camellia, Lush, Gamera are libraries of-
fering extensions to such different languages as Haskell,
Ruby, LISP, and Python. OpenCV provides bindings for
Python as well. When writing such an extension one typ-
ically uses a multi-layered approach. For example when
using Ruby, the Ruby application uses a module written
in Ruby. This module in turn wraps the library which is
written in C/C++[7].

Listing 1 illustrates how Ruby uses dynamical typing
to support scientific computing. Intermediate results are
shown in comment lines (preceded by “#”). Ruby also
offers the higher-order functions “Array.collect” and “Ar-
ray.inject” for performing mapping or accumulating oper-
ations (see listing 2). For further details about the prop-
erties of the Ruby programming language we refer to Y.
Matsumoto’s article[3].
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Listing 3: Array operations using Ruby and NArray

Table 1: Native methods for filling arrays

n = NArray.int( 4 ).indgen! 1

# NArray. int(4):

#[ 1,2, 3, 4]

m = NArray.scomplex( 4 ).fill! Complex:: I

# NArray. scomplex(4):

# [ 0.0+1.0i, 0.0+1.0i, 0.0+1.0i, 0.0+1.0i ]
n+m

# NArray. scomplex(4):

# [ 1.0+1.0i, 2.0+1.0i, 3.0+1.0i, 4.0+1.0i ]

2.3 Static library for dynamic language

When implementing a module for computer vision, one
needs to deal with various combinations of pixel types
and operations. Existing computer vision extensions ei-
ther support only a limited set of all possible combina-
tions, or the bindings do not hide the properties of the
static type system beneath very well.

A notable exception is M. Tanaka’s NArray’. NArray
is a Ruby extension implemented in C. It provides fast
operations for multi-dimensional arrays with elements of
a single type. Listing 3 shows some array manipulations
and type coercions using NArray.

2.4 Partially dynamic library

However even the NArray implementation has limita-
tions. It is not possible to add support for a new element-
type to the array class without modifying the C source
code and recompiling the extension.

To address this issue one can implement array classes
which allow definition of custom element-types[8]. To
accomplished this, the array data types are largely imple-
mented in Ruby. Custom element-types are supported by
adding native methods for performing basic operations on
an array of elements of that type.

Table 1 for example shows a customisable list of native
methods for filling one-dimensional arrays. In Ruby the
existence of a method with a certain name can be checked
during run-time using the method “Object.respond_to?”.
The Ruby part of the extension contains glue code which
tries to invoke an efficient native method before falling

2h‘ctp ://narray.rubyforge.org/SPEC.en

method element-type
Sequence.
f£ill ubyte 8-bit unsigned integers
£ill byte 8-bit signed integers
fill usint 16-bit unsigned integers
fill sint

16-bit signed integers

Listing 4: Ruby wrapper method for filling an array

class Sequence
def fill!( value )
message = ~fill_#{@typecode.name.downcase}”
if Sequence.respond_to? message
Sequence.send message, @data, @size, value
else
for i in 0...@size
self[ i ] = value
end
end
return self
end
end

back to using a slower generic implementation (see listing
4).

3 Combining Ruby and libJIT

3.1 Just-in-time compilers

There is recent work aimed at improving the general per-
formance of the Ruby virtual machine by adding just-
in-time compiler support to the Ruby virtual machine[5].
This raises the question of whether implementing a Ruby
extension for the mere purpose of increasing the perfor-
mance of machine vision algorithms will soon be unnec-
essary. However as shown in listing 1, Ruby avoids nu-
meric overflow by performing range checks and instan-
tiating a big number object when required. Furthermore
the array class of the Ruby Core library allows arrays to
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Table 2: Just-in-time compilers

g
= = E = 3
225 2 &
H = =5 < X
register allocation v v X X X
platform independence v v v X X
global optimization v X X X X

have elements of different type. This means that for the
foreseeable future there is a need for efficient data types
which reflect the behavior of the hardware more closely.

While there still is a need for efficient data types, it
makes sense to make use of a just-in-time compiler for
implementing them. All approaches presented in Sec-
tion 2 require instantiation and ahead-of-time compilation
of all possible combinations of element-types and opera-
tions. This leads to large binaries and a lengthy compila-
tion phase. Using a just-in-time compiler is much more
economical.

Table 2 shows several software projects which can be
used to perform just-in-time compilation. As one can see
the level of support varies greatly. On the one hand there
are libraries which just offer methods for writing ma-
chine code to memory and running it. On the other hand
there are libraries which offer platform independence, au-
tomatic register allocation, and global optimization. We
have written a Ruby extension for using libJIT. We have
preferred 1ibJIT over LLVM because it is a much smaller
library and the simple application programming interface
makes adoption easy.

3.2 One-dimensional arrays

Figure 1 shows an example of how the JIT-compiler
can be used from within Ruby. The method “JITFunc-
tion.compile” accepts a closure as an argument (the be-
ginning and end of the closure is marked by the keywords
“do” and “end”). The closure is interpreted by passing
“JITTerm”-objects as parameters “a” and “b”. The objects
represent (virtual) registers containing the results of read-
ing the first and second parameter from the stack. Execut-

Listing 5: Compiling and calling a binary operation

Sequence.define_binary_jit_op( "+ ) { [x,y| x +y }
s = Sequence.ubytergb( 3 ).indgen! RGB( 3, 2, 1 ), 1
# Sequenceubytergb(3):

# [RGB 3, 2, 1 ), RGB( 4, 3, 2 ), RGB( 5, 4, 3 )]
t = Sequence.sint( 3 ).indgen! -2, 2

# Sequencesint(3):

#[-2, 0, 2]

r=s+t

# Sequencesintrgb(3):

# [RGB 1, 0, -1 ), RGB( 4, 3, 2 ), RGB( 7, 6, 5 )]

ing “a + b” then creates a new “JITTerm”-object which
represents a new register containing the result of adding
L‘a’7 and C‘b”'

Using meta-programming and just-in-time compilation
it is possible to write a method which accepts a method
name and a closure containing a scalar operation and then
defines an element-wise array operation. Such a method
can then be used as shown in listing 5 to compile and
subsequently call an element-wise “+” operator (here the
closure begins with “{”” and ends with “}”’). Note that once
the generic meta-programming methods are implemented,
one line of code is sufficient to create a “+”-operator with
JIT-support for all combinations of the known types (here
24-bit unsigned RGB triplets and 16-bit signed integers).
Using meta-programming all unary and binary element-
wise operations can be implemented swiftly. In a similar
way to the NArray Ruby extension, the convention of im-
plementing the “coerce” method is used to also facilitate
scalar-array and array-scalar operations.

Table 3 gives an overview of generic array operations
which we have found to occur in computer vision algo-
rithms. “a” and “b” are parameters, and “r” is the result.
Each of “r”, “a”, and “b” is a scalar or an array depending
on the operation. In some cases a function “f” is involved.
and “j” are loop variables. However this set of oper-
ations is neither minimal nor complete. Further study is
needed to decide whether there is a finite and complete set
of generic array operations and what a minimal set would
consist of.
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plus = JITFunction.compile( JITType::INT, function fO(il:int,i2:int):ing sfunction fO(int,int):int
JITType::INT, incoming_frame_posn(il, 8) push  %ebp
JITType::INT ) do |f,alb| incoming_frame_posn(i2, 12) mov  %esp,%ebp
a+b s =il + i2 I mov  0x8%ebp),%eax
end return_int(i5) add 0xc(%ebp), %eax
plus.call 2, 3 ends_in_dead pop %ebp
#S5 end ret

Figure 1: Using libJIT with x86 back-end from within Ruby

z 3 Pt
.
i & 8 =
0o 2 1 1
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2
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k
strides[i] = 1_[ shapelk] x[0]

k=0

Figure 2: Shape and strides for a three-dimensional array

3.3 Multi-dimensional arrays and tensors

The difference between multi-dimensional arrays and
one-dimensional arrays is merely the way they are in-
dexed. Figure 2 shows an array with three dimensions and
2 x4 x 3 = 24 elements and the element with x = [1, 2, 0]
being accessed. Internally the element is stored in a one-
dimensional array and the indexis 1 %1 +2%2+8%0 = 5.

The operations listed in table 3 all have their multi-
dimensional counterpart. However in addition to this
there are tensor operations. A notable example of a li-
brary which supports tensor operations is the FTensor
library[2]. FTensor uses C++ templates to support the
use of Einstein notation (with up to four indices) in a C++
program. Listing 6 shows how one can perform a matrix
multiplication. Tensor operations are very generic. Mul-
tiplication, trace, and transpose of matrices are just a few
special cases of tensor operations.

However using Ruby and IibJIT it is possible to im-

Listing 6: Tensor operations with the FTensor library

Index< ’i’, 3> i;

Index< ’j’, 3> j;

Index< ’k’, 3 > k;

Tensor2< double, 3, 3> r, a, b;
r(i, k)=a(Ci, j)=b(j, k);

plement high performance tensor operations with support
for an arbitrary number of indices and arbitrary combi-
nations of element-types and operations, while providing
automatic determination of the result’s element-type and
dimensions.

As shown above (see figure 1) it is possible to compile a
closure to machine code. In a similar fashion one can use
dynamic typing to analyze a closure specifying a tensor
operation. E.g. the tensor method call in listing 7 specifies
aresult with one index. The closure takes two variables as
arguments. The first variable is the array index of the re-
sult. The other variable “j” becomes a summation index.
The analysis of the closure will determine the usage of
the variables as shown in table 4. Note that although only
one array (the array “m”) is used in the tensor operation,
the two occurrences need to be distinguished (“arg0” and
“argl”), since the variable “j” is used as a different index
in each case. The array strides (see figure 2) describe the
offset between two successive data elements along each
dimension. They are used to generate a fast implementa-
tion based on pointer arithmetic which is equivalent to the
naive implementation shown in listing 8.



Table 3: Generic set of array operations

Listing 7: Tensor operation in Ruby

m = MultiArray.int( 3, 3 ).indgen!

operation loop body loop variable| # MultiArrayint(3,3):
write element r[b] =a - Z [ro-1,2],

[ 3,4, 5],
read element r =a[b] -

# [6,7,8]]

r=tensor( 1) { |i,jl m[i,j] =m[j,1] }
# MultiArrayint(3):

# [ 42, 54, 66 ]

write sub-array  r[b+i]=a[i] i
read sub-array  r[i] =a[i+b] i
fill r[i] =a i
index array rli] =i i
unary function r[i] =f(a[i]) i
binary function r[i] =f(a,b[i]) i
binary function r[i] =f(a[i],b) i
binary function r[i] =f(a[i],b[i]) i
accumulate r =f(r,a[i]) i
warp/mask rli] =a[bl[i]] i
unmask r[b[i]]=ali] i
downsampling  r[i] =a[b*i] i
upsampling r[b*i] =al[i] i
integral r[i] =r[i-1]+a[i] i
map rli] =bla[i]] i
histogram rla[i]]=r[a[i]]+1 i
weighted hist. rla[i]]=r[a[1]]+Db][i] i
correlation r[i]  =r[i]+a[i+j]*b[j] 1]

Table 4: Use of array indices in listing 7

variable parameter array index
i result 0
i arg0 0
] arg0 1
] argl 0

ory cache.

4 Performance

Figure 3 shows different operations and the time required
for performing them 1000 times with HornetsEye (Ruby
1.8.6 and IibJIT 0.1.2), NArray (Ruby 1.8.6 and GCC
4.1.3), and a naive C++ implementation (G++ 4.1.3). The
tests were performed on an AMD Duron' 1.2GHz Pro-
cessor. The arrays “m” and “n” are single-precision float-

ing point arrays with 500 x 500 and 100 x 100 elements.

The results show that in general HornetsEye takes only
about twice as much processing time as the C++ im-
plementation. The C++ code is faster due to sophisti-
cated optimization by the GNU C++ compiler. The fact
that NArray is almost as fast as the C++ implementation
shows that the overhead incurred by Ruby is negligible.
We are not sure why the matrix multiplication in C++ is
slower than in HornetsEye. A possible reason is a con-
flict of loop optimisation and the behaviour of the mem-

S Concise implementations

Listing 9 shows an implementation of corner detection,
non-maxima extraction, and extraction of feature patches.
Ruby has open classes. This means that a class definition
can be altered even after objects of this class have been in-
stantiated (e.g. lines 1-30 in listing 9 add methods to the
class “MultiArray”). In line 32 the color image is loaded.

Listing 8: Naive implementation of tensor operation in
listing 7

r = MultiArray.int 3
for i in 0...3
v=20
for j in 0...3
v+=m[i,j] *m[j,1]
end
r[i]=v
end




i 0 1
locs[i] % w 186 138
locs[i] / w 18 20

Figure 4: Computing feature locations and descriptors (“w” is the width of the image)

calloc

m.fill!( 1.0)

m+m

m *m

m+ 1

m * 2

r[ik] = n[i,j] * n[j.k]
r(j] = m[i,j]

ri] = mli,j]

'/ HornetsEye
[ ] NArray

[]C++

Figure 3: Performance comparison of different array op-
erations

In line 33 the image is converted to gray scale and the
feature extraction method is called. Lines 15-20 are an
implementation of the Harris-Stephens|[ 1] edge- and cor-
ner detector (see figure 4). Line 21 then calls non-maxima
suppression which is implemented using thresholding and
comparison with the dilated image (local maximum in a
3 x 3 area). The method “crop” discards features near the
boundary to avoid problems when extracting the descrip-

tors later. The method call finally returns a boolean image
with the feature locations.

Line 34 then calls the “descriptors” method for extract-
ing local feature patches. In line 24 an index-array is gen-
erated. In line 25 an array of offsets is computed. The
masking operation in line 26 creates a one-dimensional ar-
ray with the indices of the feature locations. Line 27 then
uses a tensor operation to compute a three-dimensional ar-
ray with indices pointing to each pixel which is part of a
descriptor. Line 28 then calls a warp function which uses
the index array as a lookup table for computing the result.
The result is a three-dimensional array where each slice is
a descriptor of a feature (see figure 4).

6 Conclusion and future work

We have shown how developers of computer vision soft-
ware can benefit from the properties of a dynamically
typed language such as Ruby. Our approach only requires
wrappers for accessing the just-in-time compiler and the
input/output-libraries.

Improving the performance (see figure 3) could be ac-
complished by using a just-in-time compiler which sup-
ports similar optimization methods as GNU C++. It is
also possible to use C++ on-the-fly (using the Ruby-
Inline extension). Another possibility is to integrate GPU
hardware using native methods and glue code in a simi-
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Listing 9: Computing feature locations and descriptors

class MultiArray
def crop( fringe )
mask = MultiArray .bool( *@shape ). fill!
mask[ fringe...(@shape[0]-fringe),
fringe...(@shape[1]-fringe) ] = true
self .and mask
end
def threshold( value, fringe )
( self >= max = value ).crop fringe
end
def maxima( value, fringe )
threshold( value, fringe ).and eq( dilate )
end
def features( thresh, fringe, sigma, k )
gx, gy = gauss_gradient sigma
cov =[ gx xx 2, gy #x 2, gX * gy |
a, b, ¢ =cov.collect { |arr| arr.gauss_blur sigma }
trace =a+b
determinant = a * b — ¢ =% 2
feat = determinant — k = trace sx 2
feat.maxima( thresh, fringe )
end
def descriptors( img, r )
id = MultiArray . int( *@shape ).indgen!
patch =id[ 0..( 2 *r ), 0..( 21 ) ] —id[ r, r ]
locs = id.mask self
field = tensor( 3 ) { |i,j.k| patch[i,j] + locs[k] }
img.to_sequence.warp( field )
end
end
t, r, s, k=0.17, 4, 1.0, 0.1
img = MultiArray .load_rgb24 ’astronaut.jpg’
msk = img. to_sfloat.features t, r, s, k
descr = msk.descriptors img, r

lar fashion to that shown in Section 2.4. Furthermore one
could parallelize algorithms using multi-threading which
is supported by Ruby version 1.9.

We have shown that it is possible to develop algorithms
for signal processing without having to compromise on
performance or abstraction. Research aimed at a stronger
theoretical foundation of machine vision algorithms could
benefit from this approach. E.g. eigentransforms and nor-
malization of descriptors as well as feature similarity ma-
trices can be implemented using tensor operations. There
is also potential for implementing new data types such
as hypercomplex numbers and elements of a Lie algebra.
However more research is required to apply the results
of this work to implementations of feature matching al-
gorithms such as Geometric Hashing, RANSAC, or the
Hough Transform.

This work was supported by the Nanorobotics EPSRC
Basic Technology grant GR/S85696/01. We also would
like to acknowledge the help of Kirill Kononenko and
Klaus Treichel from the libJIT team.
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