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Motivation
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Find guiding design principles to

maintain software quality over

time.



Software Rot
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Symptoms of rotting software design:a

• Rigidity: software difficult (a lot of work) to change

• Fragility: changes easily break the software

• Immobility: it is easier to rewrite than reuse parts

• Viscosity: design preserving methods are harder to employ

than hacks

aRobert C. Martin: Design Principles and Design Patterns

https://staff.cs.utu.fi/~jounsmed/doos_06/material/DesignPrinciplesAndPatterns.pdf


Aims
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In contrast we want to achieve the following:a

• Keep software application flexible

• Keep software application robust

• Keep software application reusable

• Keep software application developable

aRobert C. Martin: Design Principles and Design Patterns

https://staff.cs.utu.fi/~jounsmed/doos_06/material/DesignPrinciplesAndPatterns.pdf


SOLID Authors
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Robert C. Martin

• Author of Clean Code, Functional Design,

and more books

• Author of Design Principles and Design

Patterns paper based on his experience and

on work by Bertrand Meyer, Barbara

Liskov, and Erich Gamma et al.

• http://cleancoder.com/

Michael Feathers

• Author of Working Effectively With Legacy

Code

• Summarized Robert C. Martin’s paper

using the SOLID acronym

• https://www.r7krecon.com/

https://www.informit.com/store/clean-code-a-handbook-of-agile-software-craftsmanship-9780132350884
https://www.informit.com/store/functional-design-principles-patterns-and-practices-9780138176396
https://staff.cs.utu.fi/~jounsmed/doos_06/material/DesignPrinciplesAndPatterns.pdf
https://staff.cs.utu.fi/~jounsmed/doos_06/material/DesignPrinciplesAndPatterns.pdf
http://cleancoder.com/
https://www.informit.com/store/working-effectively-with-legacy-code-9780131177055
https://www.informit.com/store/working-effectively-with-legacy-code-9780131177055
https://www.r7krecon.com/


The SOLID Principles
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1. Single responsibility

2. Open-closed

3. Liskov substitution

4. Interface segregation

5. Dependency inversion



Single Responsibility - Before
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def adults_to_html(people):

result = "<ul>\n"

for person in people:

if person.age >= 18:

result += " <li>" + person.name + "</li>\n"

result += "</ul>"

return result

# ...

page = adults_to_html(people)



Single Responsibility - After
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def select_adults(people):

return [person for person in people if person.age >= 18]

def people_to_html(people):

result = "<ul>\n"

for person in people:

result += " <li>" + person.name + "</li>\n"

result += "</ul>"

return result

# ...

page = people_to_html(select_adults(people))



Open-Closed - Before
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def total_area(shapes):

result = 0

for shape in shapes:

match type(shape):

case Rectangle:

result += shape.width * shape.height

case Sphere:

result += math.pi * shape.radius ** 2

case _:

raise f"Unsupported shape {shape}"

return result



Open-Closed - After
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class Rectangle:

def area(self):

return self.width * self.height

class Circle:

def area(self):

return math.pi * self.radius ** 2

def total_area(shapes):

result = 0

for shape in shapes:

result += shape.area()

return result



Liskov-Substitution - Before
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class Rectangle:

def __init__(self, width, height):

self.width = width

self.height = height

def set_width(self, width):

self.width = width

def set_height(self, height):

self.height = height

class Square(Rectangle):

def __init__(self, side):

super().__init__(side, side)

def set_width(self, width):

super().set_width(width)

super().set_height(width)

def set_height(self, height):

self.set_width(height)



Liskov-Substitution - After

Thursday, Feb 22nd 2024 12/22

class Shape:

pass

class Rectangle(Shape):

def __init__(self, width, height):

self.width = width

self.height = height

def set_width(self, width):

self.width = width

def set_height(self, height):

self.height = height

class Square(Shape):

def __init__(self, side):

self.side = side

def set_side(self, side):

self.side = side

Barbara Liskov



Liskov-Substitution - Contracts
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“The Liskov Substitution Principle states, among other constraints,

that a subtype is not substitutable for its super type if it

strengthens its operations’ preconditions, or weakens its operations’

postconditions”a

precondition

precondition postcondition

postconditiontype

subtype

method

method

aBaniassad: Making the Liskov Substitution Principle Happy and Sad

https://www.cs.ubc.ca/~ebani/papers/LiskofHappySad_ICSE-SEET_2018.pdf


Interface Segregation - Before
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class AccountHolder:

def __init__(self, name, age, balance):

self.name = name

self.age = age

self.balance = balance

def is_adult(self):

return self.adult >= 18

def deposit(self, amount):

self.balance += amount

def withdraw(self, amount):

self.balance -= amount



Interface Segregation - After
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class Person:

def __init__(self, name, age):

self.name, self.age = name, age

def is_adult(self):

return self.adult >= 18

class Account:

def __init__(self, balance):

self.balance = balance

def deposit(self, amount):

self.balance += amount

def withdraw(self, amount):

self.balance -= amount

class AccountHolder(Person):

def __init__(self, name, age, account):

super().__init__(name, age)

self.account = account



Dependency Inversion - Before
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def get_names(connection):

cursor = connection.cursor()

cursor.execute('SELECT name FROM member_table')
rows = cursor.fetchall()

names = [row[0] for row in rows]

return names

connection = sqlite3.connect('example.db')
names_list = get_names(connection)

connection.close()

print(names_list)



Dependency Inversion - After
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class Database(abc.ABC):

@abc.abstractmethod

def sql(self, query):

pass

class SQLiteDatabase(Database):

def __init__(self, db_file_name):

self.connection = sqlite3.connect(db_file_name)

def __del__(self):

self.connection.close()

def sql(self, query):

cursor = self.connection.cursor()

cursor.execute(query)

return cursor.fetchall()

def get_names(database):

rows = database.sql('SELECT name FROM member_table')
return [row[0] for row in rows]



Dependency Inversion - After
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database = SQLiteDatabase('example.db')
names_list = get_names(database)

print(names_list)



Aspects of a Class
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The 5 aspects of the class are:a

responsibility towards parent
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class'
purpose

aMike Lindner: The Five Principles For SOLID Software Design

https://swarch.blog/the-five-principles-for-solid-software-design/


The 5 Principles
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The 5 corresponding principles are:a

Liskov substitution principle

single
responsibility
principle
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open-closed principle

aMike Lindner: The Five Principles For SOLID Software Design

https://swarch.blog/the-five-principles-for-solid-software-design/


Arjan Egges: Uncle Bob’s SOLID Principles Made Easy
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19 minutes video

https://www.youtube.com/watch?v=pTB30aXS77U


Jim Weirich: The Building Blocks of Modularity
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33 minutes video

https://www.youtube.com/watch?v=q85rdBMe9GY
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