
Thursday, Feb 22nd 2024 1/22

The SOLID Principles

Jan Wedekind

Thursday, Feb 22nd 2024

Motivation

Thursday, Feb 22nd 2024 2/22

Find guiding design principles to

maintain software quality over

time.

Software Rot

Thursday, Feb 22nd 2024 3/22

Symptoms of rotting software design:a

• Rigidity: software difficult (a lot of work) to change

• Fragility: changes easily break the software

• Immobility: it is easier to rewrite than reuse parts

• Viscosity: design preserving methods are harder to employ

than hacks

aRobert C. Martin: Design Principles and Design Patterns

https://staff.cs.utu.fi/~jounsmed/doos_06/material/DesignPrinciplesAndPatterns.pdf

Aims

Thursday, Feb 22nd 2024 4/22

In contrast we want to achieve the following:a

• Keep software application flexible

• Keep software application robust

• Keep software application reusable

• Keep software application developable

aRobert C. Martin: Design Principles and Design Patterns

https://staff.cs.utu.fi/~jounsmed/doos_06/material/DesignPrinciplesAndPatterns.pdf

SOLID Authors

Thursday, Feb 22nd 2024 5/22

Robert C. Martin

• Author of Clean Code, Functional Design,

and more books

• Author of Design Principles and Design

Patterns paper based on his experience and

on work by Bertrand Meyer, Barbara

Liskov, and Erich Gamma et al.

• http://cleancoder.com/

Michael Feathers

• Author of Working Effectively With Legacy

Code

• Summarized Robert C. Martin’s paper

using the SOLID acronym

• https://www.r7krecon.com/

https://www.informit.com/store/clean-code-a-handbook-of-agile-software-craftsmanship-9780132350884
https://www.informit.com/store/functional-design-principles-patterns-and-practices-9780138176396
https://staff.cs.utu.fi/~jounsmed/doos_06/material/DesignPrinciplesAndPatterns.pdf
https://staff.cs.utu.fi/~jounsmed/doos_06/material/DesignPrinciplesAndPatterns.pdf
http://cleancoder.com/
https://www.informit.com/store/working-effectively-with-legacy-code-9780131177055
https://www.informit.com/store/working-effectively-with-legacy-code-9780131177055
https://www.r7krecon.com/

The SOLID Principles

Thursday, Feb 22nd 2024 6/22

1. Single responsibility

2. Open-closed

3. Liskov substitution

4. Interface segregation

5. Dependency inversion

Single Responsibility - Before

Thursday, Feb 22nd 2024 7/22

def adults_to_html(people):

result = "\n"

for person in people:

if person.age >= 18:

result += " " + person.name + "\n"

result += ""

return result

...

page = adults_to_html(people)

Single Responsibility - After

Thursday, Feb 22nd 2024 8/22

def select_adults(people):

return [person for person in people if person.age >= 18]

def people_to_html(people):

result = "\n"

for person in people:

result += " " + person.name + "\n"

result += ""

return result

...

page = people_to_html(select_adults(people))

Open-Closed - Before

Thursday, Feb 22nd 2024 9/22

def total_area(shapes):

result = 0

for shape in shapes:

match type(shape):

case Rectangle:

result += shape.width * shape.height

case Sphere:

result += math.pi * shape.radius ** 2

case _:

raise f"Unsupported shape {shape}"

return result

Open-Closed - After

Thursday, Feb 22nd 2024 10/22

class Rectangle:

def area(self):

return self.width * self.height

class Circle:

def area(self):

return math.pi * self.radius ** 2

def total_area(shapes):

result = 0

for shape in shapes:

result += shape.area()

return result

Liskov-Substitution - Before

Thursday, Feb 22nd 2024 11/22

class Rectangle:

def __init__(self, width, height):

self.width = width

self.height = height

def set_width(self, width):

self.width = width

def set_height(self, height):

self.height = height

class Square(Rectangle):

def __init__(self, side):

super().__init__(side, side)

def set_width(self, width):

super().set_width(width)

super().set_height(width)

def set_height(self, height):

self.set_width(height)

Liskov-Substitution - After

Thursday, Feb 22nd 2024 12/22

class Shape:

pass

class Rectangle(Shape):

def __init__(self, width, height):

self.width = width

self.height = height

def set_width(self, width):

self.width = width

def set_height(self, height):

self.height = height

class Square(Shape):

def __init__(self, side):

self.side = side

def set_side(self, side):

self.side = side

Barbara Liskov

Liskov-Substitution - Contracts

Thursday, Feb 22nd 2024 13/22

“The Liskov Substitution Principle states, among other constraints,

that a subtype is not substitutable for its super type if it

strengthens its operations’ preconditions, or weakens its operations’

postconditions”a

precondition

precondition postcondition

postconditiontype

subtype

method

method

aBaniassad: Making the Liskov Substitution Principle Happy and Sad

https://www.cs.ubc.ca/~ebani/papers/LiskofHappySad_ICSE-SEET_2018.pdf

Interface Segregation - Before

Thursday, Feb 22nd 2024 14/22

class AccountHolder:

def __init__(self, name, age, balance):

self.name = name

self.age = age

self.balance = balance

def is_adult(self):

return self.adult >= 18

def deposit(self, amount):

self.balance += amount

def withdraw(self, amount):

self.balance -= amount

Interface Segregation - After

Thursday, Feb 22nd 2024 15/22

class Person:

def __init__(self, name, age):

self.name, self.age = name, age

def is_adult(self):

return self.adult >= 18

class Account:

def __init__(self, balance):

self.balance = balance

def deposit(self, amount):

self.balance += amount

def withdraw(self, amount):

self.balance -= amount

class AccountHolder(Person):

def __init__(self, name, age, account):

super().__init__(name, age)

self.account = account

Dependency Inversion - Before

Thursday, Feb 22nd 2024 16/22

def get_names(connection):

cursor = connection.cursor()

cursor.execute('SELECT name FROM member_table')
rows = cursor.fetchall()

names = [row[0] for row in rows]

return names

connection = sqlite3.connect('example.db')
names_list = get_names(connection)

connection.close()

print(names_list)

Dependency Inversion - After

Thursday, Feb 22nd 2024 17/22

class Database(abc.ABC):

@abc.abstractmethod

def sql(self, query):

pass

class SQLiteDatabase(Database):

def __init__(self, db_file_name):

self.connection = sqlite3.connect(db_file_name)

def __del__(self):

self.connection.close()

def sql(self, query):

cursor = self.connection.cursor()

cursor.execute(query)

return cursor.fetchall()

def get_names(database):

rows = database.sql('SELECT name FROM member_table')
return [row[0] for row in rows]

Dependency Inversion - After

Thursday, Feb 22nd 2024 18/22

database = SQLiteDatabase('example.db')
names_list = get_names(database)

print(names_list)

Aspects of a Class

Thursday, Feb 22nd 2024 19/22

The 5 aspects of the class are:a

responsibility towards parent

in
te

rf
ac

e
to

w
ar

ds
 c

al
le

rs

in
te

rf
ac

e
to

w
ar

ds
 c

al
le

es

responsibility towards inheritors

class'
purpose

aMike Lindner: The Five Principles For SOLID Software Design

https://swarch.blog/the-five-principles-for-solid-software-design/

The 5 Principles

Thursday, Feb 22nd 2024 20/22

The 5 corresponding principles are:a

Liskov substitution principle

single
responsibility
principle

in
te

rf
ac

e
se

gr
eg

at
io

n
pr

in
ci

pl
e

de
pe

nd
en

cy
 in

ve
rs

io
n

pr
in

ci
pl

e

open-closed principle

aMike Lindner: The Five Principles For SOLID Software Design

https://swarch.blog/the-five-principles-for-solid-software-design/

Arjan Egges: Uncle Bob’s SOLID Principles Made Easy

Thursday, Feb 22nd 2024 21/22

19 minutes video

https://www.youtube.com/watch?v=pTB30aXS77U

Jim Weirich: The Building Blocks of Modularity

Thursday, Feb 22nd 2024 22/22

33 minutes video

https://www.youtube.com/watch?v=q85rdBMe9GY

	The SOLID Principles
	Motivation
	Software Rot
	Aims
	SOLID Authors
	The SOLID Principles
	Single Responsibility
	Before
	After

	Open-Closed
	Before
	After

	Liskov-Substitution
	Before
	After
	Contracts

	Interface Segregation
	Before
	After

	Dependency Inversion
	Before
	After

	Aspects of a Class
	Principles of a Class
	Arjan Egges on SOLID
	Jim Weirich on Connascence

